skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Liangkui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 2, 2026
  2. Abstract As we continue to commercialize space and mature in-space manufacturing (ISM) processes, there is a strong need to transfer the knowledge we learn from experiments on the ground to zero-gravity environments. Physics-motivated manufacturing processes, like additive manufacturing, experience a shift in fabrication parameters due to the absence of gravity and the change of environments. Thus, we found traditional machine learning methods are not capable of addressing this domain shift and present a transfer learning scheme as a solution in this paper. We tested a kernel ridge regression model built for heterogeneous transfer learning (KRR-HeITL) on data from the electrohydrodynamic inkjet printing (EHD printing) process. EHD printing is a process that uses electrical force to control material flows, thus achieving the fabrication of electronics without requiring gravity. Our team has successfully conducted three rounds of parabolic flights to validate this technology for ISM. We trained on multiple datasets built from on-ground experiments and tested using zero-gravity printing data obtained from parabolic flight tests. Measurements of the Taylor cone both on-ground and in zero-gravity were taken and exploited as a part of the training data. We found that our method obtains good interpolation accuracy (MAPE 3.85%) compared to traditional machine learning methods (MAPE 16.84%) for predicting the printed line width. We concluded that the KRR-HeITL method is well suited for zero-gravity domain shifts of EHD printing parameters. This study paves the way for future predictions of ISM parameters when there are only on-ground experiments or very limited zero-gravity datasets for a given process. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025